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Abstract 
Several methods for the automatic determination of 
heavy-atom structures have been developed and 
extensively tested. The methods are based on a com- 
bination of vector superposition in space group P1 
with a symmetry minimum function. The peaks of 
the symmetry minimum function are used as trial 
origin shifts in the translational search for the cell 
origin. Three or two Patterson shift vectors, all 
belonging to a single image, can be obtained for 
vector superposition by a procedure called cross- 
vector superposition. The superposition map may be 
refined by an automatic Fourier recycling in space 
group P1 before the translational search is started. 

Introduction 
Ab initio Patterson deconvolution techniques can be 
divided into two main groups depending on the 
utilization of symmetry: 

(i) The symmetry is used from the very beginning 
and some atomic positions are suggested from the 
analysis of Harker regions (Harker, 1936) or more 
automatically using the multiple implication function 
(Simpson, Dobrott & Lipscomb, 1965). For more 
sophisticated techniques also using symmetry-related 
cross vectors, see Borisov (1964), Kuz'min, Golova- 
chev & Belov (1970), Luger & Fuchs (1986), Pavelrik 
(1988) and Pavelrik, Kuchta & Siv2~ (1992). 

(ii) The Patterson function is deconvoluted by a 
(weighted) vector minimum superposition (Buerger, 
1959; Jacobson & Guggenberger, 1966) in space 
group P1 based on a carefully selected single Pat- 
terson vector or on several vectors all belonging to 

© 1994 International Union of Crystallography 
Printed in Great Britain - all rights reserved 

the same image. The symmetry is introduced after 
the structure has essentially been solved. Automatic 
structure determination based on vector minimum 
superposition in space group PI has been reviewed 
by Simonov (1982). The general approach consists of 
several steps: 

(1) Calculation of a (sharpened) Patterson 
function. 

(2) Search for an atomic fragment using Patterson 
peaks or selection of a suitable Patterson peak for 
the superposition. 

(3) Minimum-vector superposition. 
(4) Inverse Fourier transform of modified mini- 

mum superposition map. 
(5) Fourier recycling in space group P1. 
(6) Search for a standard cell origin consistent 

with the space-group symmetry by some sort of 
translation function. 

(7) Shift of the origin and electron-density averag- 
ing based on the symmetry. 

(8) Fourier recycling using only peaks of the 
asymmetric part of the unit cell. 

Even simplified algorithms based only on steps (1), 
(3) and (6) and the single vector superposition 
proved to be very successful in solving heavy-atom 
structures because of more sophisticated translation 
searching for multiple images (Richardson & Jacob- 
son, 1987) or because of combination with the cross- 
vector table (Sheldrick, 1991; Sheldrick, Dauter, 
Wilson, Hope & Sieker, 1993). 

The major sources of difficulty in the Simonov 
scheme are steps (2) and (6). The problem of selec- 
tion of Patterson peaks may be overcome by a 
special superposition suggested by Iljukhin, Kuz'min 
& Belov (1981), which is called cross-vector super- 
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position. This idea is further developed in this paper 
and applied for the purpose of automatic structure 
determination. 

The search for the cell origin consistent with 
space-group symmetry was solved by Simonov 
(1982), Richardson & Jacobson (1987) and Sheldrick 
(1991). In this paper, a new approach is suggested in 
which peaks of the symmetry minimum functions 
(SMF, or similar multiple implication function) are 
used as trial origin shifts. This reduces the number of 
tested trial shifts considerably and also uses informa- 
tion contained in Harker regions. 

Various structure-determination schemes have 
been developed and tested on structures of different 
size, complexity and symmetry. 

T h e o r y  a n d  p r o c e d u r e s  

Cross-vector superposition 
Let us select two Patterson vectors (peaks) u~ = r~: 

and u2 = r34. The cross-vector superposition can be 
formulated by 

S(r) = rain [P(r), P ( r - u 0 ,  P ( r - u : ) ,  P ( r - u l - u : ) ]  

(1) 
o r  

S(r) = rain [P(r ) ,P(r -  rl2),P(r - r34),P(r- rl2 - r34)] 

= rain {rain [P(r ) ,P(r -  rl2)], rain [P(r ) ,P(r -  r34)], 

min [P(r ) ,P(r -  r12 - r34)]}.  (2) 

The idealized Patterson function in a point approxi- 
mation (vector set) can be described with the help of 
the Dirac 6 function, 

P(r) = Z Z z , . z j S [ r - ( r ; - r j ) ]  = 7".~" zu6(r-rji), (3) 
i j  i j  

where Zis = Zsi = ZiZj, rj,.= r i -  rj-- - rij, r, is an 
atomic positional vector and Zi is an atomic number. 
The minimum of shifted vector sets, in the B-function 
formulation, can easily be analysed. The first term of 
(2) is 

min [P(r ) ,P(r -  r12)] 

= min [Zi Z Zu6(r--rji),E Z Zkm~(r--rmk--rl2) ] 
j k m 

= Zmin (Zlk,Zk2)~(r--rlk) 
k 

+ Z min (Zm2,Zlm)(~(r--rm2). (4) 
m 

The first term of (2) is a sum of two images {rtk = 
rk--rl} and {rm2 = r2-rm}, k, m = 1,2,...,N, N being 
the number of atoms in the unit cell. Analogously, 
the second term leads to {r3x } + {rx4} images. The 

third term 

min [P(r ) ,P(r -  r12 - r34)] 

=min[~i ~ ZiJB(r--riJ)'Z Z k m 

(5) 
and, because 

r12 + r34 = r2 - -  r l  + r4  - -  r3 = r4  - -  r l  + r2 - -  r3 = r14 + r32, 

(6) 
the nonzero values are obtained only for km= 21, 
43, 41 and 23. The third term is reduced to four 
points r34, rl2, r32 and rl4. The minimum from all 
three terms gives only r14 and r32 vectors, which 
represent cross vectors between rlz and r34. Points 
belonging to these vectors are of equal weight 
(height) in the cross-vector superposition. The cross- 
vector superposition is shown in Fig. 1. Four atom 
fragments can be formed for subsequent super- 
position: 

(a) 0 = r11, r12, r14, r13 = r14-- r34; 

(b) 0 = r22, r21 = - r12,  r23 = - r32, r24 = r14 - rl:; 
( e )  0 = r 3 3 ,  r34, r32,  r31 = r 3 2 - - r l 2 ;  

(d)  0 = r44, r41 = - r14, r42 = r 3 2 -  r34, 1"43 = - r34. 

Although the images are geometrically equivalent, 
they generally have (if the atoms 1, 2, 3 and 4 do not 
have equal atomic numbers) different weights. 

In practical realizations of this method, the fol- 
lowing special cases must also to be considered 
because Patterson peaks are arbitrarily selected: 

(a) the vectors ul and u2 belong to different 
images; 

(b) the vectors ul and -u2  belong to different 
images; 

(c) the vectors ui and u2 belong to the same image; 
(d) the vectors u~ and -u2  belong to the same 

image; 
(e) the vectors u~, Uz and ul+u2 belong to the 

same image (often the case in centrosymmetric struc- 
tures with two or more heavy atoms, important for 
space group P1). 

Cross-vector superposition calculated with a real 
Patterson function gives more than two (theoretical) 
peaks. The pairs of top peaks of the cross-vector 
function are used to form atomic fragments. Each 
possible solution is assigned a figure of merit, FOM 
= H;YP(uj), where H; is a peak height in the cross- 
vector superposition, the P(uj) are values of the 
Patterson function at vector positions belonging to 
the image selected (e.g. at r~2, rl3 and r14 for a 
four-atom fragment; rt2, rl3 and r23 for a three-atom 
fragment). 

There is a formal restriction on the method. Both 
Patterson peaks in the cross-vector superposition 
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should be of the H - H  type (H being the heavy or 
intermediate heavy atom). The method could be 
difficult to apply to, for example, space groups P]- or 
P2~ with only one heavy atom in the asymmetric unit 
and to space groups of higher order and with the 
single heavy atom in a special position. 

The four- or three-atom superposition based on 
the fragment selected can be calculated, which, in an 
ideal case, could reveal a single image. 

Deconvolution of  the Patterson function by double 
(multiple) Patterson peak 

This is a special case of the cross-vector super- 
position in which r~2 = r34. The cross-vector super- 
position is 

S(r) = min [P(r) ,P(r-  r~2),P(r- 2r~2)] 

= min {min [P(r),P(r-r12)] 

+ min [P(r) ,P(r-  r34)], min [P(r) ,P(r-  2r~2)] 

+ min [P(r) ,P(r-  r l2 -  r34)] + min [ P ( r -  2r34)]}. 

(7) 

The nonzero values can be found only for points r~2 

(a) 
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Fig. 1. Cross-vector  superposi t ion.  (a) F u n d a m e n t a l  set consis t ing 
o f  four  a toms.  (b) Vector  set. (c) Resul t  o f  cross-vector  super- 
posi t ion:  S(r) = min  [P(r) ,P(r  - r~2),P(r - r3,) ,e(r  - r,z - rs4)]. 

= r34 , r14 and r32. All three points lie on a line. A 
four-atom parallelogram (centrosymmetric) can be 
formed, e.g. rll =0, r12 = r34, r13 = r l 4  --  r34, r14. 

In the automated method, top peaks of the cross- 
vector function are used to form the four-atom 
parallelograms. The solution regarded as the best is 
the one with maximal value of FOM = H,[P(r~3)+ 
P(rl4)]. This criterion is important if the overlapped 
vector is of different-atom type (e.g. Cu-CI), other- 
wise second (and third) peaks of the cross-vector 
superposition can be used directly to form the vector 
parallelogram. 

The overlapped Patterson peaks are usually at the 
top of the peak list and are then suitable for an 
automatic structure determination. Because of 
centrosymmetry of the fragment, the vector- 
superposition function based on this fragment is also 
centrosymmetric and is composed of two images of 
the structure (unless the centre of the parallelogram 
coincides with the centre of symmetry of the space 
group). Any peak of this superposition function can 
be selected and subsequent superposition theo- 
retically gives a single image. 

Fourier recycling in the space group P1 

The vector-superposition map generally contains 
many false peaks because of some degree of overlap 
of Patterson vectors and because peak coordinates 
are only approximate vector coordinates. Some false 
peaks belong to shifted images and some are the 
result of splitting of peaks due to inaccuracy. The 
superposition map may be improved by a repeated 
Fourier calculation in space group P1 (phase 
refinement by the electron-density-modification 
method). Instead of an inverse Fourier transform, a 
very simple peak approach [analogous to the 
Simonov (1975) method] was used. All peaks of the 
superposition map higher than a prescribed value are 
regarded as heavy atoms. The site occupation fac- 
tors, gi, are calculated from g~ = Hi/H~, where H; is 
the peak height. The total scattering power of the 
structure is 

N 

,~N = Z z/~, (8) 
i=1 

where N is the number of atoms in the unit cell and 
Z, is an atomic number. The actual scattering power 
of n input peaks is 

n 

O'P = Z ( Z l g i )  2. (9 )  
i=1 

If ~p > erN, then the g; are further modified: 

&=(Hg/H,){[~rN- 36(N-n)]&rp} '/z i f N > n  

o r  

g;= (H;/H,)(Cru/~r,,)'/2 

(10) 

i f N < n .  
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For the purpose of the translation search (see below), 
the coordinates of the peak nearest to the origin are 
reset to (0,0,0) and gi is artificially increased by a 
factor of 1.33 in the first cycle (otherwise by a factor 
of 1.005) to ensure that the heavy atom is at the 
origin. The structure factors are calculated from 
input peaks and Fourier synthesis is calculated as a 
weighted 2Fo-Fc synthesis. The process is repeated 
until convergence is reached. In each third cycle, the 
atomic types are assigned to Fourier peaks on the 
basis of sequence numbers in the ordered peak list 
and the known contents of the unit cell. 

Search for the standard cell origin 

The vector-superposition function (based on a 
single Patterson vector, vector parallelogram, four- 
atom image) or electron-density function obtained by 
Fourier recycling in space group PI is calculated in 
such a way that some heavy atom is at the origin of 
the unit cell. The search for the standard cell origin 
can be based on this atom. Peaks of the symmetry 
minimum function (or similar multiple implication 
function) are used for generating trial origin shifts. 
The trial origin shifts are 

ro = RsrSMF q" ts (11) 

because each atom of the image of symmetry-related 
atoms can be at the origin. Each trial origin shift is 
checked for the presence of all symmetry-related 
peaks in the superposition or Fourier-refined super- 
position map. Their coordinates are 

xi = s(R#o + t i -  ro), (12) 

where s is + 1 for all space groups except 11 enantio- 
morphous pairs where both + 1 and - 1 have to be 
checked. The shift is accepted only if all the xis, 
related to the atom residing at the origin, are found 
among peaks of the superposition map within a 
specified distance limit. Each accepted origin shift is 
characterized by criteria based on the presence of as 
many as possible symmetry-equivalent peaks found 
in the shifted superposition map. 

FOM 1 = Z l-] n(xis) 
s 

FOM2 = Z min H(x,.s) 
s 

FOM3 = Y~ Z H(x;s) 
s 

FOM4 = ZZO.16/[O.16+4d(xi~) 2] 
s 

FOM5 = n. 

(13) 

H(x) is the peak height of the superposition peak 
found within a specified distance of the calculated 
peak position of a symmetry-equivalent peak, d(x) is 
the difference between the calculated and actual peak 

positions. The calculated position is 

Xis = Rs(x i  q- ro) + ts - ro. (14) 

The sum, product or minimum is added to the FOM 
only if all xis peaks are found in the superposition 
map. The total number of these contributions is n. 
The accepted origin shifts are ordered according to 
an empirical combined figure of merit 

FOM = FOM 1 + 0.2(FOM2 + 0.5 FOM3). (15) 

The vector-superposition function based on one 
vector and the subsequent search for the cell origin is 
a very discriminating and selective 'figure of merit' 
for peaks of the symmetry minimum function 
(SMF). It is selective in the sense that only SMF 
peaks belonging to atoms forming the superposition 
cross vector can be found as the shift vectors in the 
search for the cell origin; if a Harker vector is used as 
the superposition vector only one SMF peak can be 
found. 

Multisolution 

The origin shifts found in the translation search 
having the highest FOMs are used in the multisolu- 
tion. The criterion that selects the final solution can 
be either a conventional R factor (on F) or a cross- 
vector function (CVF) (Pavel6ik, 1988). In each 
particular tested solution, the origin shift is applied 
to all peaks of the superposition map. Peaks that do 
not have all symmetry equivalents are deleted from 
the peak list and from all the symmetry-equivalent 
peaks only one is retained. The selected peaks go to 
either CVF or R-factor calculation. The best cross- 
linked set of heavy atoms from the CVF is used in 
the atomic minimum superposition. The set of atoms 
with minimum R factor is used in the calculation of 
the electron density. Because it is difficult to assign 
the atomic types to the superposition peaks at this 
stage of structure determination, all atoms are 
assigned the atomic type of the heaviest atom and 
site occupation factors, g,., are calculated by g,. = 
Hi ~Hi. 

Automatic structure determination 

Automatic structure determination is started with 
a calculation of the sharpened Patterson map and 
peak picking. The Patterson peaks are ordered 
according to their heights. Peak no. 1 is the origin 
peak. In the fully automated procedure, peak no. 2 is 
used in vector superposition or peaks nos. 2 and 3 
are used in the cross-vector superposition. If these 
procedures fail to give the correct solution, the Pat- 
terson peaks have to be selected manually (if there is 
not strong chemical evidence for an H-H peak, the 
simplest way is to try all top-list peaks) and inserted 
into the automatic procedure. Several deconvolution 
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schemes for the automatic structure determination 
have been developed. 

Scheme A. 
Selection of the Patterson peak (automatically or 

manually). 
Minimum vector superposition based on this Pat- 

terson peak (in space group P1). 
SMF. 
Search for the cell origin and ordering trial origin 

shifts on the basis of the FOM. Only shifts with 
FOMs greater than 0.50 of the best FOM are con- 
sidered in the multisolution. 

Multisolution. (a) CVF multisolution for a maxi- 
mum of three origin shifts with greatest FOM by 
cross-vector function followed by the atomic mini- 
mum superposition (Pavel6ik, 1986). (b) R-factor 
multisolution for the maximum of three origin shifts. 
The set of atoms with the best R factor is used for 
electron-density calculation. 

Two Fourier cycles. 

Scheme B. 
Selection of two Patterson peaks. 
Cross-vector superposition. 
Determination of atomic fragment consisting of 

four or three atoms all belonging to one structure 
image. 

Minimum vector superposition based on this frag- 
ment (structure-determination superposition). 

SMF. 
Search for the cell origin. Only shifts with FOMs 

greater than 0.75 of the best FOM are considered in 
the multisolution. 

Multisolution. (a) CVF multisolution as in 
strategy A. (b) R-factor multisolution as in strategy 
A. 

Two Fourier cycles. 

Scheme C. 
Selection of the overlapped (double or multiple) 

Patterson peak. 
Cross-vector superposition. 
Selection of the vector parallelogram. 
Minimum-vector superposition based on this 

parallelogram. 
SMF. 
Search for the cell origin. Only shifts with FOMs 

greater than 0.50 of the best FOM are considered in 
the multisolution. 

Multisolution. (a) CVF multisolution. (b) R-factor 
multisolution. 

Two Fourier cycles. 

Scheme D. Like scheme B. The structure- 
determination superposition is followed by Fourier 
recycling in space group P1 until the structure is 
solved (this step may eventually be followed by the 
SMF and the search for the cell origin). 

The number of SMF peaks was limited to 40, but 
only peaks with Hi greater than 0.8Zn were used, 
where Zn is the atomic number of the heaviest atom. 

The result of the electron-density calculation is 
shown on the computer screen (a graphic procedure 
was adapted from XFPS (Pavel6ik, Siva, Rizzoli & 
Andreetti, 1992). If only a partial solution can be 
found, the false peaks are deleted in a graphic mode 
and the next Fourier synthesis of the electron density 
is calculated. The process can be repeated several 
times until the whole structure appears on the screen. 

Test calculations and discussion 

The test structures are given in Table 1. The results 
of calculations for scheme A are given in Table 2. I f  
the second Patterson peak (automatic run) had not 
led to structure determination, the third peak (in- 
serted in the input data) was tried and so on until the 
structure was solved. Only the first successful or 
partially successful solution is usually given in Table 
2 (e.g. ' FUNG 6' means that Patterson peaks 2-5 
failed to solve the structure); more information is 
presented only for complicated or interesting struc- 
tures. The results of calculations for scheme B are 
given in Table 3. In this scheme, various combina- 
tions of peaks were tried, starting from low peak 
numbers (peaks :2 and 3 are defaults in an automatic 
run). In the structure APAPA, only experimental 
peak positions related to known vector positions 
(calculated from atomic coordinates) were used for 
testing purposes. 

The results show that both schemes are very 
powerful for the solution of simple structures with 
dominating H - H  vectors. In complicated structures, 
the correct shift sometimes did not have the best 
FOM or multisolution criteria (R factor or CVF) 
failed to select the correct shift. The CVF criterion is 
in general preferable to the R factor. More elaborate 
combined FOMs may further increase the power of 
these methods. This will be considered in the devel- 
opment of a user-oriented computer program. In 
some structures, Patterson peaks with the lowest 
sequence numbers are not of the H - H  type (e.g. 
VULM peak no. 2, AZET peak no. 3, MGHEX 
peaks nos. 2-6). 

Scheme A sometimes failed to give the solution if 
the superposition vector was highly overlapped. This 
was the case for, for example, FUNG with H - H  
vectors 3 and 4, MORF 3 and 4, BETA 2, AZET 2, 
STR 2 and 3, APAPA 2, 6 and 8. 

Scheme B gave slightly more reliable results than 
scheme A. In most cases, cross-vector superposition 
with H - H  Patterson peaks nos. 2 and 3 led to 
solution. The exception is STR. The correct shift 
vector in the translation search is usually the shift 
with the highest FOM. Also, the number of accepted 
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Table 

Code 
BAVO 
PYOX 
F U N G  
VULM 
HAVE 
KEID 
CUSA 
M O R F  
BETA 
CUMOS 
AZET 
BOBBY 
APAPA 
M G H E X  
SELENID 
CUIM 
DAMO 
HDAV 
MCO 
ES67A 
FCI014 
FC999 
FC969 
STR 
PV206 
PV214 
PV213 
JR171 
PV220 
PV216 
WL480 
FC955 
ZAGA11 
SGPY 
NTAB 
SOLD 
MEXI 
DATFA5 
PIPE 
BL238 

1. Test structures for Patterson methods 

Formula Z Space group Reference 

Ba(VO3)2.H20 4 P212121 (1) 
CI4HI2CLICuN206 2 PT (1) 
CIvHz~CIN204PS2 8 Pccn (1) 
C18H3oCINO2 4 P2~2t2~ (1) 
CTHIsN207P 4 P2Jc (1) 
Ct4H24CoKN4012 2 PT (1) 
C~7H~3CuKN203S 2 PT (1) 
CTH~CI3N202 4 P2~/c (l) 
CIsH29C1N205 8 C2/c (2) 
CIsH33CuMoo.sNS3 8 C2/c (1) 
C42H32C12N:O: 4 Pca21 (1) 
C6H6CaNNaO6 4 P213 (1) 
C3oHa9NIsO22P2 8 P4~212 (1) 
C56HsoCI2MgNt602o 3 P3~ (1) 
C22HzsO2Se 2 P21 (1) 
C13H18CuN303 4 P2/c (1) 
CIsHsoB4Cu2FI6NIo 8 Pbca (1) 
C3HgNO3V 8 Pbca (3) 
Cr2MnO4 8 Farm (1) 
C13HtgCI6Ta 2 P2,/c (1) 
C44H52OsW 4 I422 (1) 
C95H114010 w 2 P4/n (1) 
C32H28OsW 4 C2/c (1) 
C3oHI3Co2FeMnOH 4 P2Jc (1) 
C38H34N2Zr 8 P2/n (1) 
C24H22CINOZr 2 P I  (1) 
C34H~oKN208 2 P~ (1) 
C57H63N404 v 2 P~ (1) 
C29H22C1CrO6PZr 4 P2t/ c (1) 
C29H22C1CrNO6Zr 4 Cc (1) 
Cs~H78C104Ti2 2 P I  (1) 
C62H70C12OaW 4 P2/n (1) 
C28H3sCl~N206P2Pd 1 /aT ( 1 ) 
CI7HI6CuN205 4 P2t/n (4) 
C6H,2BaNO~2V 4 Pna2~ (5) 
C~2H~TCuNO8 2 P2~ (6) 
CHH~sCINO 4 P i  (7) 
C .H .C1N4 4 P1 (8) 
CsH3~N40~V3 8 Pbca (9) 
C,~H6oNsNa~O, 4 P I  (10) 

References: (1) Pavel6ik,  K u c h t a  & Siv~ (1992); (2) Kettmann 
(1990); (3) Tyr~elovfi  & Pavel6ik (1992); (4) Sold~inov/L Tyr~elovfi 
& Pavel6ik (1993); (5) K u c h t a ,  Siv~ik & Pavel6ik (1993); (6) 
Krfitsmfir-Smogrovi6, Pavel6ik,  Soldfinovfi,  Siva, Seressovfi & 
Zeml i6ka  (1991); (7) Siva, (1992); (8) Bocelli (1990); (9) Tyr~elovfi, 
Pavel6ik & K u c h t a  (1993); (10) Pavel6ik (1992). 

shift vectors was in general smaller in comparison 
with scheme A (not documented in the tables). Some 
structures (SELENID,  JR171, SOLD) with only one 
H - H  vector in the asymmetric unit of the Patterson 
function have also been solved by scheme B. 

Experience showed that schemes A and B are more 
reliable if the Patterson peaks do not contain special 
or quasispecial coordinates like (0,0.5,0.25) etc. It is 
recommended that two vectors be selected for 
scheme B in such a way that there is at least one 
nonspecial coordinate in both peaks [e.g. one vector 
of the type (x,O,z) and a second one of (0,y,0.5)]. 

Scheme C also showed itself to be fairly powerful 
in solving crystal structures (Table 4). The main 
problem is to select a peak consisting of two over- 
lapping H - H  vectors. For this reason, only centro- 
symmetric structures with two or more heavy atoms 
were tested and a twice overlapped cross vector was 

Table 2. Results of  test calculations for scheme A 

PV Patterson peak number used in the Patterson deconvo lu t i on .  
CS sequence number of  sorted FOM belonging to correct shift 
vector(s). CVF multisolution by cross-vector function. R F  mult i -  
so lu t ion  by R-factor calculation. S shift vector selected by CVF or 
R-factor multisolution. R R-factor resulting from automatic struc- 
ture determination, c number o f  extra graphic Fourier cycles 
needed to finish structure determination. A fully automated struc- 
ture determination, otherwise Patterson peaks have been specified 
on input. N no solution found. 

Code PV 

BAVO 2A 
PYOX 2A 
F U N G  6 
VULM 3 
VULM 4 
HAVE 2A 
KEID 2A 
CUSA 2A 
MORF 2A 
MORF 5 
BETA 3 
CUMOS 2A 
AZET 2A 
AZET 6 
BOBBY 2A 
APAPA 16 
APAPA 17 
MGHEX 7 
SELENID 2A 
CUIM 2A 
DAMO 2A 
HDAV 2A 
MCO 2A 
ES67A 2A 
FCI014 2A 
FC999 2A 
FC969 2A 
STR 4 
PV206 2,4 
PV214 2A 
PV213 2A 
JR171 2A 
PV220 2A 
PV216 2A 
WL480 2A 
FC955 2A 
ZAGA 11 2A 
SGPY 2A 
NTAB 2A 
SOLD 2A 
MEXI 2A 
PIPE 2A 

CVF 

CS S R 

1 0.13 
1 0.31 

1,3 0.37 
2 N 
1 0.35 

1,3 0.56 
2 N 
i 0.23 
3 3 0.33 
2 2 0.31 
2 1 0.55* 
3 3 0.23 
1 1 N 
3 1 N 
1 1 0.41 
1 1 0.49 
1 1 0.49 
2 2 0.45 
1 1 0.29 
1 1 0.29 

1,3 1 0.33 
1 1 0.48 
1 1 0.33 
1 1 0.30 
1 1 0.26 
1 1 0.24 
1 1 0.27 

1-4 i 0.29 
1 1 0.32 
1 1 0.26 
I 1 0.36 
1 1 0.32 
1 1 0.27 
1 1 0.20 

2,3 2 0.36 
2 2 0.28 
2 2 0.25 
1 1 0.29 
1 1 0.24 
1 1 0.33 
2 2 0.28 
1 1 0.25 

* The whole structure was found but it 
(0.0,0.0,0.08). 

RF 

c S R c 

0 2 N - 
0 1 0.34 0 
1 3 0.33 0 
- 2 0.33 0 
0 ! 0.37 2 
0 3 0.45 0 
- 2 0.40 0 
0 1 0.22 0 
0 2 N - 
0 2 0.33 0 
- 2 0.44 0 
0 3 0.20 0 
- 1 0.52 2 
- 3 0.43 1 
1 1 0.25 0 
! 1 0.53 3 
1 ! 0.50 1 
0 2 0.45 0 
0 1 0.29 0 
0 1 0.31 0 
0 3 0.35 1 
0 1 0.42 0 
0 1 0.19 0 
1 1 0.27 2 
1 1 0.21 1 
0 1 0.23 0 
0 I 0.26 0 
0 3 0.28 0 
0 2 N - 
0 ! 0.25 0 
0 1 0.36 0 
0 1 0.32 0 
0 1 0.27 0 
0 1 0.36 2 
0 1 N - 
0 1 N - 
0 2 0.25 0 
0 1 0.31 0 
0 I 0.19 0 
2 1 0.29 1 
0 1 N - 
0 1 0.45 0 

was shifted by the vector 

used for Patterson deconvolution by cross-vector 
superposition. The method is less powerful if the 
H - H  atoms are of  different atomic types like Cu-C1 
in PYOX or Cu-K in CUSA,  because peak heights 
in the cross-vector minimum superposition are given 
by the self vectors C1-CI or K-K,  which are near to 
background level. Scheme C could be very useful for 
automatic structure determination of structures with 
two or more equal heavy atoms in space group P1 
(WL480, MEXI, DATTA5).  The cross vectors domi- 
nate on the peak list, whereas the single-weighted 
H-H vector is more difficult to recognize. 
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Table 3. Results of test calculations for scheme B 

For symbols  see Table 2. 

Code PV CS 

BAVO 2,3A I 
PYOX 2,3A 1 
F U N G  2,3A 1 
F U N G  3,4 1 
VULM 3,4 1 
HAVE 2,3A 1 
CUSA 2,3A 1 
MORF 2,3A 1 
BETA 2,3A 1 
CUMOS 2,3A 2 
AZET 2,6 1 
BOBBY 2,3A I 
APAPA 11,17 I 
SELENID 2,3A ! 
CUIM 2,3A 1 
DAMO 2,3A 1,2 
DAMO 2,4 1 
HDAV 2,3A 1 
MCO 2,3A 1-4 
ES67A 2,3A 1 
STR 2,4 1 
PV206 2,3A 1,2 
JRI71 2,3A 1 
PV220 2,3A I 
PV216 2,3A 1 
WL480 2,3A 1,2 
FC955 2,3A 1 
ZAGA11 2,3A 1 
SGPY 2,3A 1 
NTAB 2,3A 1 
SOLD 2,3A 1 
MEXI 2,3A 1 
PIPE 2,3A 1,2 

CVF RF 

R ¢ 
0.13 0 
0.33 0 
0.50 1 
0.41 0 
0.35 0 
0.56 0 
0.22 0 
0.32 0 
0.53 0 
0.23 0 
0.43 1 
0.41 1 
0.49 1 
0.29 0 
0.29 0 
0.38 1 
0.38 0 
0.48 0 
0.30 0 
0.30 1 
0.32 0 
0.32 0 
0.32 0 
0.27 0 
0.23 0 
0.36 0 
0.47 2 
0.24 0 
0.29 0 
0.24 0 
0.33 2 
0.29 0 
0.26 0 

* The whole  structure was found but it was shifted 
(0.0,0.0,0.08). 

R c 
0.15 0 
0.31 0 
0.41 0 
0.29 0 
0.32 0 
0.35 0 
0.22 0 
0.33 0 
0.45* - 
0.20 0 
0.43 1 
0.25 0 
0.47 0 
0.28 0 
0.31 0 
0.32 0 
0.31 0 
0.44 0 
0.30 0 
0.39 1 
0.31 0 
0.32 0 
0.29 0 
0.27 0 
0.27 1 
0.35 0 
0.36 1 
0.26 0 
0.31 0 
0.16 0 
0.25 0 
0.27 0 
0.36 0 

by the vector 

Scheme D was tested on difficult structures and on 
several more-or-less arbitrarily selected less- 
complicated structures for comparison (Table 5). The 
phase refinement by Fourier recycling in space group 
P1 is a rather slow process, so in many cases it is 
stable. Nevertheless, it may be regarded as the last 
choice for otherwise unsolvable structures or for 
structures with uncertain space group or pseudosym- 
metry. The structures of DATTA5 and BL238 were 
solved by this method. In complicated structures, the 
success of the automated recycling may depend on 
the fine details of the algorithm. The variables are, 
for example, the number of input atoms in individual 
cycles, the method of calculation of site-occupation 
factors, degree of preference for the origin peak, type 
of Fourier synthesis (2Fo- Fc, Fo, Eo, weighted, 
unweighted). More research is needed to settle these 
problems. 

The problem structures are now commented on in 
more detail. 

DATTA5. The A, B, C strategies failed to find the 
correct solution because the SMF peaks belonging to 
C1 atoms were not among the 40 peaks used for 
generation of trial origin shift vectors. It seems that 
peaks preselected by, for example, the second-order 

Table 4. Results of test calculations for scheme C 

For symbols  see Table 2. 

CVF RF 

Code PV CS S R c S R c 

WL480 2A 1 1 0.35 0 1 0.34 0 
MEXI 2A 1 1 0.29 0 1 0.31 0 
PYOX 3 3 3 0.32 0 3 0.30 0 
PYOX 4 1 1 0.34 0 1 0.31 0 
CUMOS 2A 2 2 0.23 0 2 0.21 0 
M O R F  10 1 1 0.31 0 1 0.31 0 
DAMO 12 1-3 3 0.47 2 3 0.42 1 
STR 4 1 1 0.28 0 1 0.31 0 
CUSA 2A 1 1 0.22 0 1 0.21 0 
PV220 4 1 1 0.27 0 1 0.26 0 
PV206 2A 1 ! 0.55 2 2 N - 
PV206 7 1 1 0.32 0 2 N - 
PV214 3 1 2 N - 1 0.25 0 

Table 5. Results of test calculations for scheme D 

G represents extra graphics cycles. 

Code PV R fac to r s  ( % )  

BAVO 2,3A 49,35,25,18,16,15,13,12,10 
CUMOS 2,3A 52,36,29,25,22,18,22,19,13 
DATTA5 2,4 54,36,41,35,26,27,29,25,24 
VULM 3,4 58,38,39,31,30,32,29,28,27, G:28 
PYOX 2,3A 52,39,31,21,18,18,19,17,17 
BETA 2,3A 57,44,39,34,33,28,25,23,19 
F U N G  3,4 47,55,39,44,49,34,40,45,32,39,42,29,36,35,24,23,24,18 
STR 3,4 47,36,30,33,31,25,32,29,24, G:23,22,21,23,21 
AZET 6,11 71,54,51,40,35,41,35,34,38,35,34,36,34,34,34, G:33,33,21 
BL238 3,5 54,55,43,50,55,40,47,53,38,47,52,37,47,52,36,46,51,35,44, 

49,34,42,47,33,42,47,33,42,45,32,37,36,25,34,31,20,30, 
26,18 

symmetry minimum function (Pavel6ik, 1988) would 
be useful and this case will be considered in future. 
The cross-vector superposition and Fourier recycling 
easily gave the solution. 

BL238. This is a structure in which the heavy atom 
is Na + It was supposed that there are clusters of 
atoms in the shape of a cube. Three multiple over- 
lapped Na-O vectors forming the edges of the cube 
were easily recognizable in the Patterson function 
(because of length 2.3 A and approximate right 
angles) as well as Patterson vectors belonging to the 
square and body diagonals of the cube. Two overlap- 
ped Na-O vectors were selected and the cross-vector 
superposition gave a four-atom fragment. Neither 
CVF nor R-factor multisolution were able to give the 
solution. The information from the superposition 
map based on this small fragment was refined by 
Fourier recycling and all 232 atoms could be seen on 
the computer screen (divided into eight fragments 
with central Na404 cubes). There is also strong trans- 
lational pseudosymmetry relating symmetry- 
independent cubes. The second Patterson vector 
(0.5,0.0,0.5) has a height 56% of that of the origin 
peak. 

STR. The failure of scheme B for fully automated 
structure determination using Patterson peaks nos. 2 
and 3 was caused by the fact that both Patterson 
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peaks are overlapped and their coordinates are 
(0.51,0.50,0.75) and (0.0,0.0,0.5). Also, the first two 
peaks of the SMF are false. The correct shift vector 
was the second one but the FOM was outside the 
limit specified (0.75 of the best FOM). The structure 
was solved using Patterson peaks noN. 2 and 4. 

DAMO. The coordinates of two copper atoms 
Cul (0.10,0.24,0.94) and Cu2 (0.07,0.22,0.28) have 
similar x and y coordinates. The SMF gave these 
atoms at (0.09,0.25,0.06) and (0.09,0.25,0.19) with 
the same y coordinate. Patterson vectors noN. 2 and 3 
with coordinates (0.0,0.0,0.50) and (0.5,0.0,0.38) used 
in the cross-vector superposition have undefined y 
coordinates. The delicate balance in the inaccurate y 
SMF coordinate gave in some preliminary test calcu- 
lations inaccurate coordinates of Cu atoms in the 
CVF and subsequent atomic superposition inter- 
changed the y coordinates. Two Fourier syntheses 
were not able to correct for this error. The atomic 
minimum superposition started with only one Cu 
atom gave better results. 

BETA. The whole structure has appeared on the 
screen in all cases presented in Tables 2 and 3 but in 
two cases the whole molecule was shifted by a vector 
(0,0,0.08) with respect to the cell origin (the wrong 
shift vector was selected in the multisolution). 

AZET. The well known test structure distributed 
with M U L T A N .  The C1-C1 vectors in the sharpened 
Patterson function have sequential numbers 2, 4, 6, 
8, 9, 11, 42 and 52. This is an example where fine 
details of the algorithm are crucial for the success of 
the method. The cross-vector superposition and 
Fourier recycling in P1 did not give the solution for 
low-order Patterson peaks. 

MGHEX.  The Patterson peak for the Mg-Mg 
vector is no. 7. Although the structure is large, the 
space group is of order 3 and the scattering power of 
Mg 2+ is not very high, there were no special prob- 
lems with the structure determination. The only 
problem was to find the H - H  vector. One had to try 
each Patterson vector starting from peak no. 2. 

APAPA. The P-P vectors can be found in the 
broad interval from 2 to 123. The top P-P peaks are 
numbers 2, 11, 16 and 17. Peak no. 2 has coordinates 
(0.5,0.5,0.5) resulting from averaging because of the 
overlap of several P-P vectors. The CVF is not able 
to filter out two P atoms effectively. There are too 
many atoms (552) in the unit cell, the experiment is 
not very accurate and the execution times are very 
long so the structure has not been tested by Fourier 
recycling in P1. 

The results show that more than 80% of heavy- 
atom structures can be solved automatically and 
almost all structures can be solved with minimal 
intellectual effort simply by inserting the top Pat- 
terson peaks into the automatic procedure. These 
methods are useful alternatives to previously 
published methods (Pavel6ik, 1988; Pavel6ik, Kuchta 
& Siva, 1992), particularly for structures with lower 
symmetry (especially P1) and uncertain space 
groups. 
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